Database Design
Database design is the process of producing a detailed data model of a database to support the requirements of an information system.
Database Types
Relational Databases
- Structured data
- ACID compliance
- SQL querying
- Examples: MySQL, PostgreSQL, Oracle
NoSQL Databases
- Flexible schema
- Horizontal scaling
- High performance
- Examples: MongoDB, Cassandra, DynamoDB
NewSQL Databases
- ACID + Scalability
- Distributed architecture
- Modern features
- Examples: CockroachDB, Google Spanner
Design Principles
Normalization
- Eliminate redundancy
- Reduce anomalies
- Improve integrity
- Levels: 1NF to 5NF
Denormalization
- Improve performance
- Reduce joins
- Increase redundancy
- Trade-off with normalization
Indexing
- Speed up queries
- Types: B-tree, Hash, Bitmap
- Consider write performance
- Composite indexes
Scaling Strategies
Replication
- Master-Slave
- Master-Master
- Read replicas
- Consistency models
Sharding
- Horizontal partitioning
- Range-based
- Hash-based
- Directory-based
Partitioning
- Vertical partitioning
- Horizontal partitioning
- Range partitioning
- List partitioning
Implementation Examples
MySQL Table Design
CREATE TABLE users (
id INT PRIMARY KEY AUTO_INCREMENT,
username VARCHAR(50) UNIQUE NOT NULL,
email VARCHAR(100) UNIQUE NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
INDEX idx_username (username),
INDEX idx_email (email)
);
CREATE TABLE posts (
id INT PRIMARY KEY AUTO_INCREMENT,
user_id INT NOT NULL,
title VARCHAR(200) NOT NULL,
content TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES users(id),
INDEX idx_user_id (user_id)
);
MongoDB Schema
// User Schema
{
_id: ObjectId,
username: String,
email: String,
created_at: Date,
posts: [{
title: String,
content: String,
created_at: Date
}]
}
Best Practices
-
Schema Design
- Understand requirements
- Choose appropriate types
- Consider relationships
- Plan for growth
-
Performance Optimization
- Proper indexing
- Query optimization
- Connection pooling
- Caching strategies
-
Security
- Access control
- Encryption
- Backup strategy
- Audit logging
Common Challenges
- Data consistency
- Performance tuning
- Schema evolution
- Migration strategies