Skip to main content

Uber System Design

Uber is a ride-sharing platform that connects riders with drivers. Let's analyze its system design.

System Requirements

Functional Requirements

  • User registration and authentication
  • Real-time ride matching
  • Location tracking
  • Payment processing
  • Rating system
  • Trip history

Non-Functional Requirements

  • High availability
  • Low latency
  • Real-time updates
  • Scalability
  • Data consistency

Architecture

High-Level Design

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│ Mobile │ │ API │ │ Services │
│ Apps │────▶│ Gateway │────▶│ Layer │
└─────────────┘ └─────────────┘ └─────────────┘
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Message │ │ Storage │
│ Queue │ │ Layer │
└─────────────┘ └─────────────┘

Components

  1. Mobile Applications

    • Rider app
    • Driver app
    • Real-time location updates
    • Push notifications
  2. API Gateway

    • Request routing
    • Authentication
    • Rate limiting
    • Load balancing
  3. Microservices

    • User Service
    • Location Service
    • Matching Service
    • Payment Service
    • Notification Service
  4. Message Queue

    • Kafka for event streaming
    • RabbitMQ for task queues
    • Real-time updates
    • Event processing
  5. Storage

    • PostgreSQL for user data
    • Redis for caching
    • MongoDB for trip data
    • Cassandra for location data

Data Models

User

{
"user_id": "123",
"type": "rider",
"name": "John Doe",
"email": "[email protected]",
"phone": "+1234567890",
"payment_methods": [
{
"id": "pm_123",
"type": "credit_card",
"last4": "4242"
}
]
}

Trip

{
"trip_id": "t123",
"rider_id": "123",
"driver_id": "456",
"status": "completed",
"pickup_location": {
"lat": 37.7749,
"lng": -122.4194
},
"dropoff_location": {
"lat": 37.7833,
"lng": -122.4167
},
"start_time": "2023-01-01T00:00:00Z",
"end_time": "2023-01-01T00:30:00Z",
"fare": 25.50,
"rating": 5
}

Key Features

Ride Matching

  1. Location Tracking

    • Real-time GPS updates
    • Geohashing
    • Proximity search
    • Location history
  2. Matching Algorithm

    • Driver availability
    • Distance calculation
    • Rating consideration
    • Surge pricing

Payment Processing

  • Multiple payment methods
  • Split payments
  • Refund handling
  • Fraud detection

Scaling Strategies

Location Service

  • Geohashing for efficient queries
  • Sharding by region
  • Caching hot locations
  • Batch processing

Database Scaling

  • Sharding by region
  • Read replicas
  • Caching layer
  • Data partitioning

Challenges

  1. Real-time Updates

    • Location accuracy
    • Network latency
    • Battery consumption
    • Data consistency
  2. Matching Algorithm

    • Fairness
    • Efficiency
    • Scalability
    • Dynamic pricing
  3. Payment Processing

    • Security
    • Reliability
    • Compliance
    • Fraud prevention

Further Reading